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Abstract

In this paper we describe the design of a control algorithm for MISO systems, which can be modelled as hybrid  fuzzy  models.
Hybrid fuzzy models present a convenient approach to modelling nonlinear hybrid systems.

We discuss the formulation of a hybrid fuzzy model, its structure and the identification procedure. This is followed by a derivation
of the inverse model and its implementation in the control algorithm. The control scheme we are discussing splits the control
algorithm in two parts: the feedforward part and the feedback part. In the paper, we deal with the feedforward part of the control
algorithm, which is based on an inverse of a hybrid fuzzy model. Next, a batch-reactor process is introduced. The modelling of
the batch reactor is tackled and the results of the simulation experiments using the proposed control algorithm are presented. The
experiments involved controlling the temperature of a batch reactor using two on/off input valves and a continuous mixing valve.

The main advantage of the proposed approach is that the feedforward part of the control algorithm can bring the system close
to the desired adjusted feasible trajectory, which avoids the need for a very complex feedback part of the algorithm. Therefore, the
control algorithm presents a low computational burden, particularly comparing to the standard model predictive control algorithms.
These usually require a considerable computational effort, which often thwarts their implementation on real industrial systems.
Nevertheless, we show that using the proposed control approach the hybrid fuzzy model framework presents a convenient option
for modelling complex systems for control purposes in practice.
© 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

Dynamic systems that involve continuous and discrete states are called hybrid  systems. Most industrial processes
contain both continuous and discrete components, for instance, discrete valves, on/off switches, logical overrides, etc.
The continuous dynamics are often inseparably interlaced with the discrete dynamics; therefore, a special approach
to modelling and control is required. At first this topic was not treated systematically [20]. In recent years, however,

hybrid systems have received a great deal of attention from the computer science and control community.

The principle of model  predictive  control  (MPC) is based on forecasting the future behavior of a system at each
sampling instant using the process model. The complex hybrid and nonlinear nature of many processes that are met
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n practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model
hat is suitable for MPC is often a difficult task. Hence, the need for special methods and formulations when dealing
ith hybrid systems is very clear.
MPC methods for hybrid systems employ several model formulations. Often the system is described as mixed  logical

ynamical (MLD) [3]. A lot of interest has also been devoted to piecewise  affine  (PWA) formulation [17], which has
een proven to be equivalent to many classes of hybrid systems [7]. What is more, MLD models can be transformed
o the PWA form. The optimal control problem for discrete-time PWA systems can be converted to a mixed-integer
ptimization problem and solved online [11]. On the other hand, in [10] the authors tackle the optimal control problem
or PWA systems by solving a number of multi-parametric programs offline. In such manner, it is possible to obtain a
olution in the form of a PWA state feedback law that can be efficiently implemented online.

The aforementioned methods mainly consider systems with continuous inputs, despite the fact that solutions based
n (multiparametric)  mixed  integer  linear/quadratic  programming  (mp-MIQP/MILP) can be applied to systems with
iscrete inputs as well. However, the computational complexity increases drastically with the number of discrete states,
nd so these methods can become computationally too demanding. An algorithm for the efficient MPC of hybrid systems
ith discrete inputs only is proposed in [13].
Most of the previous work related to the MPC of hybrid systems is based on (piecewise) linear and equivalent

odels. However, such approaches can prove unsuccessful when dealing with distinctive nonlinearities. Since a PWA
ormulation can only represent piecewise affine systems, further segmentation is required in order to suitably approx-
mate the nonlinearity. The new segments introduce new discrete auxiliary variables in the MILP/MIQP optimization
rogram, which causes a higher complexity, often resulting in programs that are computationally too demanding.

A nonlinear modelling approach for MPC purposes is presented in [16]. The authors introduce an analytical
redictive-control-law for fuzzy systems. The modelling and identification methodology is usable for plain nonlinear
ystems, but not for the structurally more complex class of hybrid systems. A hierarchical identification of a fuzzy
witched system [21] is introduced in [12]. Furthermore, two structure-selecting methods for nonlinear models with
ixed discrete and continuous inputs are presented in [5]. In [14] a fuzzy control method is implemented in the low

ontrol-level for a class of hybrid systems based on hybrid automata.
In this paper we focus on using the hybrid fuzzy model formulation presented in [9]. The framework is suitable for

odelling nonlinear hybrid systems and can be implemented in model predictive control design. The basic idea of this
aper is to present the feedforward part of a control algorithm suitable for controlling MISO systems, which can be
odelled by a hybrid fuzzy model.
The outline of the paper is as follows. Section 2 introduces the hybrid fuzzy model. In addition, in Section 3 the

dentification procedure for a hybrid fuzzy model is introduced. Next, in Section 4 the basic control scheme and the
dea of the feedforward part of the control algorithm is presented. We also discuss the inclusion of a feedback part
n the control algorithm. This is followed by Section 5, which deals with derivation of the inverse model and its
mplementation in the control algorithm. In the following section, a batch-reactor process is introduced. The modelling
f the batch reactor is tackled and the results of the simulation experiments using the proposed control algorithm are
resented. Finally, we give some concluding remarks.

. Modelling  of  a  hybrid  fuzzy  model

Dynamic systems are usually modelled by feeding back delayed input and output signals. In the discrete-time
omain a common nonlinear model structure is the NARX (Nonlinear AutoRegressive with eXogenous inputs) model
15], which gives the mapping between the past input–output data and the predicted output.

ŷp(k  +  1) =  F (y(k),  y(k  −  1),  .  .  . , y(k  −  n  +  1),  u(k),  u(k  −  1),  .  . .  ,  u(k  −  m  +  1)) (1)
ere, y(k), y(k  −  1), . . ., y(k  −  n  + 1) and u(k), u(k  −  1), . .  ., u(k  −  m  + 1) denote the delayed process output and input
ignals, respectively. Hence, the model of the system is represented by the (nonlinear) function F.

In this paper, a special class of systems is addressed, i.e., nonlinear hybrid systems with discrete inputs. Therefore,
n Eq. (1) u stands for the discrete input.
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2.1.  Hybrid  system  hierarchy

As already mentioned, many processes met in practice demonstrate a hybrid nature, which means that the continuous
dynamics are interlaced with the discrete dynamics. A special class of such systems is called switched systems, where
the continuous states remain continuous even when the discrete states are changed, i.e. no jumps of the continuous state
vector are allowed. In this paper we deal with hybrid systems represented by a hierarchy of discrete and continuous
subsystems where the discrete part is atop the hierarchy. A discrete-time formulation is described in Eqs. (2) and (3).

x(k +  1) =  fq(x(k),  u(k)) (2)

q(k) =  g(x(k),  q(k  −  1),  u(k)) (3)

Here, x ∈Rn is the continuous state vector, which includes all relevant system outputs y  (see Eq. (1)), i.e. measurable
continuous states (delayed and non-delayed) that influence the state vector in the next time-step. u  ∈ Rm denotes the
input vector. q  ∈  Q (where Q =  {1,  .  . . ,  s}) is the discrete state, which defines the switching region. Discrete states are
also referred to as operating modes. There are s  operating modes of the hybrid system. The hybrid states are hence
described at any time-step k  by the set of states (x(k), q(k)) in the domain Rn × Q.

The local behavior of the model described in Eq. (2) depends on the discrete state q(k), which defines the current
function fq.

Eq. (3) introduces a modification of the strict Witsenhausen hybrid system formulation [21] in the sense that the
discrete state q(k) depends on the input vector u(k) as well as on the continuous state vector x(k) and the previous
discrete state q(k  −  1).

The continuous part of the system is generally nonlinear, therefore it can be modelled as a Takagi–Sugeno fuzzy
model, as shown in Section 2.2.

2.2.  Generalization  of  the  Takagi–Sugeno  formulation  for  a  nonlinear  hybrid  system

In order to approximate a nonlinear system, a fuzzy formulation can be employed. Fuzzy models can be regarded
as universal approximators, which can approximate continuous functions to an arbitrary precision [4,6].

The system dynamics can be formulated as a Takagi–Sugeno fuzzy model. In order to address nonlinear hybrid
systems, we have generalized the model formulation by incorporating the discrete part of the system dynamics given
in Eq. (3) in the rule base. In this instance, the rule base of the hybrid fuzzy system is represented in Eq. (4).

Rjd :

if  q(k) is Qd and y(k) is A
j
1 and .  . . and y(k  −  n  +  1) is A

j
n

then  ŷp(k  +  1) =  fjd(y(k),  .  . .  ,  y(k  −  n  +  1),  u(k),  .  .  . , u(k  −  m  +  1))

for j  =  1,  .  . .  ,  K  and d  =  1,  .  . .  ,  s

(4)

The if-parts (antecedents) of the rules describe hybrid fuzzy regions in the space of the input variables of the hybrid
fuzzy model. Here, q(k) ∈  {1, . .  ., s}  stands for the discrete state of the nonlinear hybrid system, i.e., its operating
mode. Qd and A

j
i represent (fuzzy) sets characterized by their crisp and fuzzy membership functions, respectively.

The number of relevant rules in the hybrid fuzzy model is K · s. Generally speaking, K  depends on the number of
fuzzy membership functions for each antecedent variable y(k), .  . ., y(k  −  n  + 1), u(k), .  .  ., u(k  −  m  + 1). The membership
functions have to cover the whole operating area of the system. What is more, the rules have to distinguish all possible
combinations of the membership functions in the antecedent variable space. Hence, K  is a product of the number of
membership functions corresponding to each antecedent variable y(k), y(k  − 1), .  . ., y(k  − n + 1), u(k), . . ., u(k  −  m  + 1).
Note that there are K  fuzzy sets A

j
i as the appurtenant membership functions are the same for every rule {R}jd,

regardless of d. This means that the fuzzy partitioning of the state-space is the same, regardless of the current discrete

state (operating mode) of the system. In other words, the normalized degrees of fulfillment are calculated only from
the continuous states of the system.

On the other hand, s  denotes the number of operating modes of the nonlinear hybrid system, which is also the number
of crisp membership functions characterizing the sets Qd. The number of operating modes depends on the partitioning
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f the state-space and the number of discrete inputs. For instance, in case we have 2 discrete input variables and each
ariable can have 4 discrete values, the number of operating modes (due to discrete inputs) is 8. However, if there are
ome infeasible (unwanted or unneeded) input combinations, the number of operating modes of a hybrid fuzzy system
s appropriately reduced.

The then-parts (consequences) are functions of the inputs of the hybrid fuzzy model. Here, ŷp(k  + 1) is an output
ariable representing the predicted output of the process in the next time step (see Eq. (1)).1 There is one function of
nputs fjd defined for each rule {R}jd; j = 1, . .  ., K  and d = 1, . .  ., s  in the hybrid fuzzy model. In general, fjd can be a
onlinear function. However, usually an affine function fjd is used, as shown in Eq. (5).

fjd(y(k),  .  . .  ,  y(k  −  n  +  1),  u(k),  . .  . , u(k  −  m  +  1))

= a1jd y(k) +  .  .  . +  anjd y(k  −  n  +  1) +  b1jd u(k) +  .  . .  +  bmjd u(k  −  m  +  1) +  rjd (5)

n this case fjd determines the output, while a1jd, . . ., anjd, b1jd, .  . ., bmjd and rjd denote consequent parameters, all
orresponding to the rule {R}jd.

The output of the hybrid fuzzy model in a compact form is given by the following equation.

ŷp(k  +  1) =  β(k) �T (k) ψ(k) (6)

ere, β(k) represents the normalized degrees of fulfillment for the whole set of fuzzy rules (j  = 1, . .  ., K) in the current
ime-step k, written in the vector form β(k) = [β1(k) β2(k) .  . .  βK(k)]. We assume the normalized degrees of fulfillment,
hich are generally time-dependent, comply with Eq. (7) for every time-step k.

β(k)I =
K∑
j=1

βj(k) =  1 (7)

ere, I  is the unity vector.
The normalized degree of fulfillment βj(k) corresponding to a set of rules Rjd for every d  = 1, .  .  ., s  is obtained using

 T-norm [18]. In our case it is a simple algebraic product, given in Eq. (8).

βj(k) =
μ
A
j

1
(y(k)) ·  .  . . ·  μ

A
j
n
(y(k  −  n  +  1))

K∑
i=1

μAi1
(y(k)) · . .  . · μAin

(y(k  −  n +  1))

(8)

ere, μ
A
j

1
(y(k)) . .  . μ

A
j
n
(y(k  −  n  +  1)) denote the membership values [1,2,18].

In Eq. (6), Θ(k) denotes a matrix with n  + m  + 1 rows and K  columns, which contains the consequent fuzzyfied
arameters of the hybrid fuzzy model in the current time-step k. As noted in Eq. (9), Θ(k) is actually a function of the
iscrete state of the hybrid fuzzy system in the current time-step q(k).

�(k) =  �(q(k)) =

⎧⎪⎪⎨
⎪⎪⎩
�1 if q(k) =  1

...
...

�s if q(k) =  s

⎫⎪⎪⎬
⎪⎪⎭ (9)
he matrices Θd contain the consequent fuzzyfied parameters of the hybrid fuzzy model for each operating mode
q = d  ∈  {1, . .  ., s}), individually. We assume the set of matrices Θd to be time-invariant.

1 When applying the Takagi–Sugeno formulation MPC purposes, ŷp(k + 1) can also be regarded as the predicted state of the system x̂(k + 1) (see
q. (2)).
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Each matrix Θd contains all the consequent fuzzyfied parameters of the hybrid fuzzy model for the set of hybrid
fuzzy rules {{R}jd}, where d  is fixed and j  = 1, .  . ., K. Θd is constructed as shown in Eq. (10).

�T
d =

⎡
⎢⎢⎣
a11d · · ·  an1d b11d ·  ·  ·  bm1d r1d

...
...

...
...

...

a1Kd · · ·  anKd b1Kd ·  ·  ·  bmKd rKd

⎤
⎥⎥⎦ (10)

In Eq. (6), ψ(k) denotes a regressor in time-step k. The regressor contains all the relevant model inputs that are needed
in fjd. ψ(k) is constructed as shown in Eq. (11).

ψT (k) = [
y(k) · ·  · y(k  −  n  +  1) u(k) ·  · ·  u(k  −  m  +  1) 1

]
(11)

In general, hybrid fuzzy models can have multiple inputs and outputs (also known as multivariable models). In the case
that the system has several outputs, the functions of the inputs fjd can be regarded as vector functions. In modelling,
however, we can concern ourselves only with single-output hybrid fuzzy models and, accordingly, presume fjd to be
a scalar function. In the case of modelling a multiple-output process, several models in parallel can be used instead,
without any loss of generality. Furthermore, if the system has several inputs, the regression vector is simply extended
so as to include all the relevant model inputs.

A similar approach can be taken into consideration when dealing with higher-than-first-order processes (n  > 1). The
regression vector therefore comprises all the system outputs from past time-steps y(k  −  1), .  . ., y(k  −  n  + 1) needed for
predicting ŷp(k  + 1). However, in the case that it is possible to measure the relevant system states, which can substitute
the system outputs from the past time-steps y(k  −  1), . .  ., y(k  −  n  + 1) in order to predict ŷp(k  + 1), it is generally more
appropriate to employ several (simpler) first-order models running in parallel in place of a single nth-order model for
MPC purposes. If such first-order models are not feasible, it is still suitable to employ several lower-than-nth-order
models instead. To put it another way, it is generally reasonable to make use of all the available data measured in a single
time-step. However, due to unmeasurable system states it is sometimes not possible to carry out such an approach.

3. Identification  of  the  hybrid  fuzzy  model

To identify the hybrid fuzzy model means to set its structure by defining appropriate membership functions in the
input space of the model and to estimate the parameters belonging to each rule. The input space of the model can often
be (fuzzily) partitioned heuristically. However, sometimes it is needed to conduct a pre-clustering2 procedure in order
to define the appropriate membership functions.

The hybrid fuzzy system with a common consequence structure (described in Section 2.2) can be expressed as a
global linear model. The input-dependent parameters given in Eq. (12) can be derived from Eq. (10).

�̃(k) =  �(k) β(k)T (12)

In this case the hybrid fuzzy model output (6) can be described as in the following equation.

ŷp(k  +  1) = �̃(k)T ψ(k) (13)

The hybrid fuzzy model parameters a1jd, . .  ., anjd, b1jd, .  .  ., bmjd and rjd have to be estimated for each rule {R}jd; j = 1,
. . ., K  and d = 1, . .  ., s. To put it another way, all the matrices Θd have to be established (see Eq. (10)).

The regression matrix Ψ jd for the rule {R}jd in Eq. (14) is obtained using the whole set of input data for the
hybrid fuzzy system. Here, index k  runs from k1 to kPjd, where Pjd denotes the number of input–output data pairs
corresponding to the rule {R}jd. However, only data from time-steps k  that comply with the conditions in Eqs. (15)

and (16) are actually used for constructing the regression matrix Ψ jd. Here, δ  denotes a small positive number. Since

2 E.g. fuzzy c-means clustering (see [8]).
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he model parameters are obtained by matrix inversion (described later in this section), compliance with Eq. (16) is
ssential for obtaining suitably conditioned matrices.

�jd =

⎡
⎢⎢⎣

βj(k1) ψT (k1)
...

βj(kPjd) ψT (kPjd)

⎤
⎥⎥⎦ (14)

q(k) =  d  (15)

βj(k) ≥  δ  (16)

he output variable of the system y is included in the output data vector Yjd, which corresponds to the rule Rjd, as
ritten in Eq. (17). Again, only data from time-steps (k  + 1) that comply with the conditions in Eqs. (15) and (16) are

ctually used for constructing the output data vector Yjd.

Y jd =

⎡
⎢⎢⎣
βj(k1) y(k1 +  1)

...

βj(k1) y(kPjd +  1)

⎤
⎥⎥⎦ (17)

he output contribution ŷ
jd
p (k  +  1) corresponding to the rule Rjd is written in Eq. (18).

βj(k1) ŷjdp (k  +  1) =  �T
jd (βj(k1) ψ(k)) (18)

ere, vector Θjd represents a column in the matrix Θd, which contains the parameters of the hybrid fuzzy model
orresponding to the rule Rjd as denoted in Eq. (19).

�T
jd =  [a1jd . .  .  anjd b1jd . .  . bmjd rjd] (19)

ccording to Eqs. (14), (17) and (18), the hybrid fuzzy model parameters for the rule Rjd can be obtained using the
east-squares identification method as written in Eq. (20).

�jd =  (�Tjd�jd)
−1
�TjdY jd (20)

y calculating the hybrid fuzzy model parameters for the whole set of rules Rjd; j = 1, .  .  ., K  and d  = 1, . .  ., s, the hybrid
uzzy model is finally established.

The parameters of the hybrid fuzzy model are estimated on the basis of measured input–output data using the least-
quares identification method. The approach is based on decomposition of the data matrix Ψ  into K  ·  s submatrices

jd. Hence, the parameters for each rule {R}jd (j  = 1, . .  ., K  and d  = 1, .  .  ., s) are calculated separately. Due to better
onditioning of the submatrices Ψ jd, compared to the conditioning of the whole data matrix Ψ , this approach leads to

 better estimate of the hybrid fuzzy parameters, or to put it in another way, the variances of the estimated parameters
re smaller compared to the classic approach given in the literature [1,2,18,19].

The described instantaneous linearization generates the parameters of the global linear model (see Eq. (12)), which
epends on the antecedents of the hybrid fuzzy system q(k), y(k), .  .  ., y(k  −  n  + 1), u(k), .  . ., u(k  −  m  + 1). In the case of
PC, the global linear parameters can be used directly to predict the behavior of the system. In this case, the controller

as to adapt to the dynamic changes online.

. The  control  scheme

The basic idea of the control scheme discussed in the paper is to split the control algorithm in two parts: the
eedforward part and the feedback part (see Fig. 1).

In the paper, we focus on the feedforward part of the control algorithm. The feedforward part of the algorithm uses

 hybrid fuzzy model of the MISO system we are to control in order to calculate the appropriate inputs. By feeding the
eference signal into the inverse hybrid fuzzy model the algorithm obtains the appropriate input signal.

The second part of the control algorithm is a feedback controller. However, we do not deal with the feedback part
f the algorithm in this paper.
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controller

feedforward

feedback

process
u y

yref

uFB

uFF
Fig. 1. The control scheme.

The main advantage of the proposed approach is that the feedforward part of the control algorithm can bring the
system close3 to the desired adjusted feasible trajectory. Therefore, in order to obtain a suitable control performance,
a simple design of the feedback part of the control algorithm should be sufficient. For instance, one could use a model
predictive controller employing a model, which is linearized at the operating point of the system. Since the feedback
part of the algorithm takes into account the output signals of the system, the combined control algorithm could easily
compensate for the inaccurate modelling, noise and eventual disturbances on the real system.

5. Feedforward  control  using  an  inverse  model

The basic idea of the control approach is to derive a hybrid fuzzy model of the MISO system we are to control and
use the inverse of the model as a sort of feedforward controller. That means that the input of the controller is fed with
the reference signal, whereas the output returns the calculated inputs of the system in the relevant time-step. Of course,
it is very important to take into account the eventual constraints of the system.

5.1. Inverse  model

We assume that the hybrid fuzzy model of the system is known in advance. The model of the system is formulated in
a compact form in Eq. (6). Furthermore, we assume the system has a single output and the model should be fuzzyfied
with regard to the output (β(k) = β(y(k))). In addition, we assume the system has a single continuous input. The operating
mode is defined by the discrete inputs.4 Starting with Eq. (6), the hybrid fuzzy model of the system can be rewritten
in the following Eq. (21).

ŷp(k  +  1) =  β(y(k)) �T (q(k)) ψ(k) (21)

With some mathematic operations using Eqs. (21), (9), (10), and (11) it is possible to derive an inverse model by
expressing the input in the following Eqs. (22), (23), (24), (25) and (26).

u(k) = ŷp(k  +  1) −  SA,inv −  SB,inv −  SR,inv

SUinv
(22)

SA,inv =
n∑
i=1

K∑
j=1

βj(y(k)) aijd(q(k)) y(k  −  i +  1) (23)

SB,inv =
m∑ K∑

βj(y(k)) bijd(q(k)) u(k  −  i  +  1) (24)

i=2 j=1

3 Depending on the accuracy of the hybrid fuzzy model.
4 In case the operating mode should depend on the output of the model instead of the input, it is possible to take this into account by employing

crisp sets in addition to fuzzy sets A
j

i (see Eq. (4)).
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SR,inv =
K∑
j=1

βj(y(k)) rjd(q(k)) (25)

SU,inv =
K∑
j=1

βj(y(k)) b1jd(q(k)) (26)

.2. The  feedforward  part  of  the  control  algorithm

.2.1. The  basic  control  law
In order to obtain the desired feedforward controller, we derive the control law from Eq. (22). The predicted output

f the model in the next time-step is exchanged with the desired output, i.e. the reference signal: ŷp(k  + 1) →  yref(k).
ccordingly, the feedforward design is implemented by substituting the model outputs in the previous time-steps
ith the reference signal: y(k  −  i  + 1) →  yref(k  −  i). The normalized degrees of fulfillment are also calculated from the

eference signal instead of the actual model output: βj(y(k)) →  βj(yref(k  −  1)).
With the aforementioned substitution it is now possible to derive the control law as expressed in the following Eqs.

27), (28), (29) and (30).

uFF (k) = yref (k) −  SA −  SB −  SR

SU
(27)

SA =
n∑
i=1

K∑
j=1

βj(yref (k  −  1)) aijd(q(k)) yref (k  −  i) (28)

SB =
m∑
i=2

K∑
j=1

βj(yref (k  −  1)) bijd(q(k)) uFF (k  −  i  +  1) (29)

SR =
K∑
j=1

βj(yref (k  −  1)) rjd(q(k)) (30)

SU =
K∑
j=1

βj(yref (k  −  1)) b1jd(q(k)) (31)

q. (27) presents the core of the control algorithm where the appropriate input signal uFF(k) is calculated from the
nverse model so that the desired output signal yref is obtained. Note that due to causality reasons, the actual output
ill be delayed by one time-step with regard to the reference signal yref.

.2.2. Handling  the  input  constraints  and  the  operating-mode  selection
The basic control law as described in Eq. (27) returns the calculated feedforward input uFF(k) without considering

ts constraints. However, in most industrial applications the inputs are inherently constrained. Therefore, instead of just
sing the inverse model to calculate the often unreasonable input value uFF(k), which should be fed into the system so
s to cause the output to track the desired reference trajectory yref, the control algorithm has to take these constraints
nto account. In other words, in case the desired reference trajectory yref is impossible to track, the algorithm has to
djust it in order to make it feasible. The adjustment is done in the following manner.

The algorithm first uses the hybrid fuzzy model in Eq. (21) to calculate the range of the outputs ŷp(k  + 1) of the
ybrid fuzzy system considering the input constraints for each operating mode individually. Note that since the hybrid

uzzy system is monotonous in a sense that an extreme5 input signal u(k) results in an extreme predicted output ŷp(k + 1)

5 Extreme in a sense that u(k) is at the endpoint of the constrained interval.
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in the domain of each individual operating mode, we can establish a reachability matrix R̂p(k  +  1) as given in Eq. (32)
with only two calculations of the predicted output per operating mode.

R̂p(k  +  1) =

⎡
⎢⎢⎣
ŷp,min(k  +  1)|q(k)=1 ŷp,max(k  +  1)|q(k)=1

...
...

ŷp,min(k  +  1)|q(k)=s ŷp,max(k  +  1)|q(k)=s

⎤
⎥⎥⎦ (32)

The reachability matrix R̂p(k  +  1) is made up of the range intervals of the predicted output in the next time-step
ŷp(k  + 1) of the hybrid fuzzy model. Each row represents an individual operating mode q(k). There are two possible
scenarios.

(1) In case the desired reference is in an interval ŷp(k  + 1) ∈  [ŷp,min(k  + 1) | q(k)=d, ŷp,max(k  + 1) | q(k)=d] represented by an
individual row of the reachability matrix R̂p(k  +  1) denoting the range of the hybrid fuzzy system in the domain
of the corresponding operating mode q(k) = d, we can conclude that the desired reference ŷp(k  + 1) is feasible.

The corresponding operating mode q(k) = d  (and hence the discrete input signal) is selected. The continuous
input uFF(k) is calculated using the basic control law in Eq. (27) as described above.

If the desired reference is in more than one interval represented by individual rows of the reachability matrix
R̂p(k  +  1), the operating mode q(k) is selected on a higher level. The continuous input uFF(k) is calculated using
the basic control law in Eq. (27) for each operating mode, which returns a feasible solution, individually. Next, the
algorithm selects the most suitable continuous input uFF(k) and its corresponding operating mode q(k) from the
previously calculated set of solutions according to some pre-specified high-level rules or cost functions.

(2) In case the desired reference is not in any of the intervals ŷp(k  + 1) /∈  [ŷp,min(k  + 1) | q(k)=d, ŷp,max(k  + 1) | q(k)=d]
represented by individual rows of the reachability matrix R̂p(k  +  1) denoting the range of the hybrid fuzzy system
in the domain of the corresponding operating mode q(k) = d  = 1, . . ., s, we can conclude that the desired reference
ŷp(k  + 1) is infeasible.

Therefore, the desired reference signal has to be adjusted by moving it into the range of the hybrid fuzzy model.
The algorithm selects the closest feasible solution in the reachability matrix R̂p(k  +  1) to the desired reference
and treats the new value as the adjusted feasible reference signal. The corresponding operating mode q(k) = d (and
hence the discrete input signal) is selected. The continuous input uFF(k) is calculated using the basic control law
in Eq. (27) as described above, the only diference being that the adjusted feasible reference signal is used in Eqs.
(27)–(31) from this time-step on.

6. Control  of  a  batch  reactor

The control approach was tested on a simulation example of a real batch reactor that is situated in a pharmaceutical
company and is used in the production of medicines. The goal is to control the temperature of the ingredients stirred
in the reactor core so that they synthesize into the final product. In order to achieve this, the temperature has to follow
the reference trajectory given in the recipe as accurately as possible. In addition, the temperature in the reactor’s water
jacket should be constrained between a minimum and maximum value.

6.1. The  batch  reactor

A scheme of the batch reactor is shown in Fig. 2. The reactor’s core (temperature T) is heated or cooled through
the reactor’s water jacket (temperature Tw). The heating medium in the water jacket is a mixture of fresh input water,
which enters the reactor through on/off valves, and reflux water. The water is pumped into the water jacket with a

constant flow φ. The dynamics of the system depend on the physical properties of the batch reactor, i.e., the mass
m and the specific heat capacity c of the ingredients in the reactor’s core and in the reactor’s water jacket (here, the
index w  denotes the water jacket). λ  is the thermal conductivity, S  is the contact area and T0 is the temperature of the
surroundings.
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Fig. 2. Scheme of the batch reactor.

The temperature of the fresh input water Tin depends on two inputs: the position of the on/off valves kH and kC.
owever, there are two possible operating modes of the on/off valves. In case kC = 1 and kH = 0, the input water is cool

Tin = TC = 12 ◦C), whereas if kC = 0 and kH = 1, the input water is hot (Tin = TH = 75 ◦C).
The ratio of fresh input water to reflux water is controlled by the third input, i.e., by the position of the mixing valve

M.
We are therefore dealing with a multivariable system with two discrete inputs (kC, kH), a continuous input (kM) and

wo measurable outputs (T  and Tw). Due to the nature of the system, the time constant of the temperature in the water
acket is obviously much shorter than the time constant of the temperature in the reactor’s core. Therefore, the batch
eactor is considered as a stiff system.

.2.  Hybrid  fuzzy  model  of  the  batch  reactor

The modelling procedure is explained in detail in Sections 2 and 3
The temperature in the reactor’s core T  is influenced only by the heat conduction between the reactor’s core and

he reactor’s water jacket. Furthermore, we have surmised that the heat conduction is proportional to the temperature
ifference between the reactor’s core T  and the reactor’s water jacket Tw. Therefore, a first-order linear MISO submodel
an be presumed, as shown in (33). The system parameters are given below.

T̂ (k  +  1) =  �T
c [Tw(k) T  (k)]T (33)

�T
c = [0.0033 0.9967] (34)

he temperature in the reactor water jacket Tw is influenced by the temperature in the core T, the fresh input water
nflow at the mixing valve kM, and the position of the cold-water and hot-water on/off valves kC and kH.

Let us assume two operating modes of the subsystem (s  = 2).

 The first operating mode (q  = 1) is the case when the fresh input water is hot, i.e., kC(k) = 0 and kH(k) = 1.
 The second operating mode (q  = 2) is the case when the fresh input water is cool, i.e., kC(k) = 1 and kH(k) = 0.

q(k) =  q(kC(k),  kH (k)) =
{

1 if kC(k) =  0 ∧  kH (k) =  1

2 if kC(k) =  1 ∧  kH (k) =  0
(35)

ext, the membership functions have to be defined. The system is fuzzyfied with regard to the temperature in the
eactor’s water jacket Tw(k). Simple triangular functions are used, as shown in Fig. 3.

Such a form of the membership functions ensures that the normalized degrees of fulfillment βj(Tw) are equal to the

embership values μj(Tw) across the whole operating range for each rule {R}jd, respectively. The normalized degrees

f fulfillment βj(Tw) make up a normalized vector of fulfillment β(Tw(k)) = β(k). In this case there are five membership
unctions (K  = 5), with maximums at 12, 20, 40, 60 and 700, so that the whole operating range is covered.
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Fig. 3. Membership functions.

The rule base of the hybrid fuzzy model is given in (36). We presume that a local system corresponding to an
individual rule {R}jd is affine.

Rjd :

if q(k) is Qd and Tw(k) is A
j
1

then  Tw(k  +  1) =  a1jdTw(k) +  a2jdT  (k) +  b1jdkM(k) +  rjd

for j  =  1,  .  . .  ,  5 and d  =  1,  2

(36)

The output of the model of the temperature in the reactor’s water jacket is written in compact form in (37), (38) and
(39). For a detailed description of the identification procedure see [9].

T̂w(k  +  1) =  β(k) �T
w(k) [Tw(k) T  (k) kM(k) 1]T (37)

�w(k) =
{
�w1 if q(k) =  1

�w2 if q(k) =  2
(38)

�w1 =

⎡
⎢⎢⎢⎣

0.9453 0.9431 0.9429 0.9396 0.7910

0.0376 0.0458 0.0395 0.0339 0.0225

19.6748 16.7605 10.5969 3.9536 1.6856

0.3021 0.2160 0.5273 1.2701 12.0404

⎤
⎥⎥⎥⎦ (39)

�w2 =

⎡
⎢⎢⎢⎣

0.9803 0.9740 0.9322 0.9076 0.8945

0.0025 0.0153 0.0466 0.0466 0.0111

−0.0704 −0.6956 −7.8013 −12.2555 −18.7457

0.2707 0.2033 0.5650 1.9179 5.6129

⎤
⎥⎥⎥⎦ (40)

6.3. Results

We tested the feedforward control algorithm first on the derived hybrid fuzzy model of the batch reactor. The

reference trajectory is shown in the following figures: the temperature in the core of the reactor should first rise to
62 ◦C, then fall to 26 ◦C, and finally settle on 35 ◦C. We also imposed a control constraint: the temperature in the
reactor’s water jacket should be constrained between Tw,min =  20 ◦ C and Tw,max =  70 ◦C.
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Fig. 4. Feedforward control of the hybrid fuzzy model: Core temperature (solid line) and reference temperature (dotted line).

The results of the experiment using the feedforward part of the control algorithm for hybrid fuzzy systems on the
ybrid fuzzy model of the batch reactor are shown in the following figures. Note that the simulation model representing
he process and the model used in the algorithm are exactly the same.

Fig. 4 depicts the temperature in the core of the reactor T  and the reference trajectory as stated above. The adjusted
easible reference trajectory calculated by the feedforward control algorithm using the hybrid fuzzy model is not shown
n the figure, because it is perfectly followed by the output signal, except for the inherent delay due to causality reasons.

Fig. 5 shows the temperature in the water jacket of the reactor Tw and the reference trajectory as stated above. Again,
he adjusted feasible reference trajectory calculated by the feedforward control algorithm using the hybrid fuzzy model
s not shown in the figure, because it is perfectly followed by the output signal, except for the inherent delay due to
ausality reasons.

The input signals are shown in Fig. 6.
We can observe that the reference was well followed by the temperature in the reactor core, as shown in Fig. 4. From

ig. 6, we can see that the reactor is operating according to the input constraints. The control algorithm also guarantees

 response without an overshoot, which is an important advantage of using a suitable model of the process. What is
ore, the pre-specified control constraints regarding the temperature in the water jacket have been fully complied with,

s can be seen in Fig. 5 (note the saturated limits of the temperature trajectory).
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Fig. 5. Feedforward control of the hybrid fuzzy model: Temperature in the water jacket (solid line) and reference temperature (dotted line).
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The aforementioned advanced control requirements are difficult if not impossible to meet when using traditional
control approaches, whereas they can be tackled using a control algorithm that takes into account an appropriate model
of the process, such as a hybrid fuzzy model and its inverse.

7. Conclusion

In an ideal scenario, the hybrid fuzzy model used in the control algorithm would be exactly the same as the system
being controlled. It is clear that in this case the control law in Eq. (27) guarantees that the output follows the adjusted
feasible reference trajectory ideally, which is also evident from the simulation results. The reference trajectory is
adjusted according to feasible solutions, which are calculated considering the control constraints using the hybrid
fuzzy model of the system. Obviously, the output is inherently delayed with regard to the adjusted feasible reference
due to causality reasons (see Section 5.2).

However, it goes without saying that in real-world applications the hybrid fuzzy model used in the control algorithm
represents only an approximation of the system being controlled. Therefore, it is clear that the output can not exactly
follow the adjusted feasible reference trajectory using only the feedforward part of the control algorithm. Hence, a
feedback part should be included in the control algorithm as described in Section 4. The future work will therefore
focus on developing and including the feedback part in the control algorithm and verifying its usefulness it on the
studied batch reactor example.

The main advantage of the proposed control approach is that the algorithm presents a low computational burden; both
the feedforward and feedback part are computationally simple, particularly comparing to the standard model predictive
control optimization algorithms. When the optimization algorithms are used for controlling complex processes that
are modelled using the presented hybrid fuzzy model, they usually require a considerable computational effort, which
often thwarts their implementation on real industrial systems. Nevertheless, we show that using the proposed control
approach the hybrid fuzzy model framework presents a convenient option for modelling complex systems for control
purposes in practice.
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